Experiences with an Algorithm Recommender System

Naren Ramakrishnan
Department of Computer Science
Virginia Tech, VA 24061
Tel: (540) 231-8451
naren@cs.vt.edu

INTRODUCTION

There is now a significant amount of mathematical and
scientific software available on the web. Much of it is
accessible if we know ‘what we want’ and ‘where it is’.
However, the obstacles of selecting the best algorithm
for a particular problem and subsequently finding an
appropriate software implementation are often difficult
and sometimes even impossible to surmount. As an ex-
ample, it is estimated that there are nearly 10 million
software modules for numerical quadrature that are po-
tentially interesting and significantly different from one
another! This paper outlines experiences with an algo-
rithm recommender system — PYTHIA — that selects
software modules on the web, given problem instances
and user specified constraints.

One of the main research issues in algorithm recommen-
dation is understanding the fundamental processes by
which knowledge about scientific problems and their so-
lutions is created, validated and communicated. While
some of this knowledge could come from experts the
field, other knowledge would be mined from experimen-
tal data or learnt by the system automatically as a result
of experience.

ALGORITHM RECOMMENDATION

Algorithm recommendation is similar to traditional ap-
plications of recommender systems (like book and movie
recommenders) in many ways. For instance, both of
them embody the notion of profiling: a recommender
system is only as effective and accurate as its user pro-
files, their coverage of the application domain and the
performance of the recommender improves with ‘experi-
ence’. However, algorithm recommendation also entails
significant differences and interesting problems:

e While there is an inherent uncertainty in interpreting
and assessing the performance measures of a particu-
lar algorithm for a particular problem, ratings and/or

evaluations can be computed objectively and auto-
matically by performance evaluation systems and it
is not necessary to involve a human in the loop. For
example, the performance database server [4] and the
NetSolve project (at Oak Ridge National Labs) [1] to-
gether provide a facility to run experiments and cata-
log benchmark performance data on standardized test
problems. Within each sub-domain, there is consid-
erable agreement on what performance measures are
deemed important, how test collections should be or-
ganized, what kinds of features (of problems) are con-
sidered relevant and so on.

An algorithm recommender system is often required to
justify the rationale for its recommendation (scientists
and engineers would be experts at building models in
their particular domain, but novices at understand-
ing the intricacies of these mathematical models and
the software systems required to solve them). It thus
needs to communicate effectively with user(s) who will
have very little background of actual algorithms and
their performance. Furthermore, such a system is ex-
pected to provide ‘What-If’ design scenarios that ex-
plore the space of possible alternatives for recommen-
dations.

In traditional recommenders, features of the problem
instance are easily obtained, either explicitly or via
simple ‘parsing’ of the input. However, the cost and
complexity to identify, characterize and measure fea-
tures is very high in algorithm recommendation. For
example, to test numerically if a matrix is ‘positive
definite’ is usually much more expensive than the ac-
tual computation to be performed! Thus the useful-
ness of this feature is limited to those cases where
‘positive definiteness’ is measured from symbolic apri-
ori information.

Depending on the way the problem is (re)presented,
the space of applicable algorithms changes; some of
the best algorithms sacrifice generality for performance
and have specially customized data structures and
routines fine tuned for particular problems or their
reformulations. A good algorithm recommender sys-
tem should take this into account while assisting the
user.



| Differential and Integral Equations

11 Odinary Differential Equations (ODEs)

12 Partial Differential Equations (PDEs)

| 2a Initial Boundary Val ue Probl enms

1 2al Par abol i c

12b El l'i ptic Boundary Val ue Probl ems

12b1 Li near

| 2bla Second Order

1 2blal Poi sson (Lapl ace) or Hel mhol tz Equation

| 2blala Rect angul ar Donai n

13 Integral Equations

Figure 1: Partial View of the GAMS Taxonomy.

DESIGN OF THE PYTHIA SYSTEM

The PYTHIA scientific recommender system [5] uses a
database of problems (and their features), algorithms
(and their characteristics) to mine rules that correlate
the effect of problem features with algorithm perfor-
mance. In addition, it interfaces with the GAMS math-
ematical software repository (http://gams.nist.gov) to
provide an URL where a software module implementing
this algorithm can be obtained. GAMS provides conve-
nient access to thousands of software modules physically
distributed among several Internet repositories. It sup-
ports search for appropriate modules by problem, key-
word or name. Objects that can be downloaded include
abstracts for the routines, documentation, examples and
source code. GAMS’s main contribution to scientific
software is its tree structured taxonomy that helps de-
termine appropriate modules for problem classes. A par-
tial view of the taxonomy is shown in Fig. 1.

As shown, the problem class I refers to modules for
solving differential and integral equations, 12 indexes
to modules for PDEs, 12b is for elliptic boundary value
problems, 12b1 is for linear elliptic boundary value prob-
lems and so on. GAMS functions in an interactive mode,
guiding the user from the top of a classification tree to
specific modules as the user describes the problem in
increasing detail. During this process, many features of
the problem are determined, indirectly from the user.
However, at the ‘leaves’, there still exist several choices
of algorithms for a specific problem instance. The entire
GAMS tree has around 750 nodes, indexes over 10,000
software modules, and is quite elaborate.

The combined PYTHIA-GAMS system can now be pub-
licly accessed at http://www.cs.purdue.edu/research/
cse/pythia or through the traditional GAMS interface
with a specially designed proxy web server (For details
on the implementation, we refer the interested reader
to [6]). PYTHIA recommends algorithms for three do-
mains of the GAMS taxonomy: H2a (one dimensional
integration), I12blala and I12bla3 (elliptic partial differ-
ential equations). We now detail some of the research

issues involved in building recommender systems for sci-
entific domains:

e AT techniques for organizing and selecting recommen-
dations and the use of domain specific restrictions for
the management of recommendation spaces. For ex-
ample, PYTHIA uses syntactic and semantic restric-
tions on the nature of the induced hypotheses to re-
duce the search space of possible recommendations [8].

e Identifying various kinds of ‘recommendation prim-
itives’ such as those involving link analysis, hybrid
reasoning, constraint reasoning and constructive in-
duction [5].

e Design of recommender systems around existing infor-
mation infrastructures such as network repositories,
cross indices and web-based information warehouses
[6].

e Software kernels for creating recommender systems [2,
7).

e Information integration from multiple recommender
systems [3]. PYTHIA’s methodology is both content-
based (in that recommendations are based on specific
features of the user input) and collaborative (multiple
recommender systems can interact and help to identify
a good resource).

e Mining for recommendations from trace and perfor-
mance data [8].

e Updating the basis for recommendations dynamically
(allowing the system to function online) [8].

PYTHIA’s design is intended to address many of these
issues. In addition, the host problem-solving environ-
ment could monitor the progress of algorithms recom-
mended and provide feedback data (about run-time ex-
ceptions, errors and unmet constraints) so that PYTHIA
could update its ‘basis’ (the rule bank) automatically. A
sample recommendation from PYTHIA might be: ‘Use
the 5-point star algorithm with a 200 X 200 grid on an
NCube/2 with 16 processors: Confidence: 0.85, Soft-

ware available at http://math.nist.gov/cgi-bin/gams-serve/
list-module-components/ELLPACK/1-14-46 /13058 .html.”

For an empirical evaluation of PYTHIA, we refer the
reader to [7].

INTERACTION WITH PYTHIA

PYTHIA is an important instructional aid for compu-
tational science. In particular, it uses terminological
descriptions (also known as description logics) of do-
main entities to influence algorithm recommendation.
This property is central for the creation of intelligent
tutoring systems [9]. Such descriptions permit the use
of subsumption and difference operators that are use-
ful for providing explanations, decompositions and user
modeling. Here are a few examples:

e Consider the concepts ‘elliptic partial differential equa-
tions’ (C1), ‘partial differential equations’ (C2) and
‘elliptic’ (C3). If PYTHIA needs to solicit informa-



= e

KBAS Recommendations Vieuer

3
dyakanov-cgd/
38
0.2477987772797097

0i0009?35021430226643
p

lise method

uwith grid lines

Solution time

Relative Error

Closest matching problen

i

nd o

Figure 2: Example recommendation from the PYTHIA
system. In addition, PYTHIA identifies the closest
matching problem in its database that has character-
istics most similar to the one presented by the user.

tion pertaining to C1 to make a recommendation, and
the user is an ‘expert’ in C2 (and C3), the difference
operation C'1 — C?2 results in the description ‘elliptic’,
thus decomposing the original problem into smaller
subproblems that can be addressed by the user.

e Consider the case when a user identifies that algorithm
X is good for any problem with ‘a mixed boundary
condition and a self-adjoint operator’, whereas the rec-
ommender rules suggest that the algorithm is actually
effective when the problem has just a ‘mixed bound-
ary condition’. PYTHIA can construct the difference
that tells the user that ‘self-adjoint operator’ is not
needed to determine the applicability of algorithm X.

e This facility can also be used to remove redundant in-
formation from descriptions (as shown in Fig. 2) where
parts of information that the user already knows can
be safely omitted (In the example here, the window
does not show aspects of the computing environment,
which were subsumed by the user’s input description.
The GAMS URL is also not specified since the user
accessed the system through the GAMS web page.)

e This can also aid in collaboratively identifying a com-
munity of users with similar descriptions (like ‘scien-
tists who are familiar with adaptive algorithms but
not non-adaptive algorithms’). In addition, PYTHIA
can be used to create versions of GAMS tailored to
specific applications.

FUTURE DIRECTIONS

We plan to expand PYTHIA into a tool for the entire na-
tional science and engineering community and to explore
ways to extend our implementations to less structured
domains of scientific software. PYTHIA would help sci-
entists and engineers achieve increased levels of interac-
tivity as they work together to solve common problems.
Further, it will enable and hence encourage an increased
flow of information and knowledge among these scien-
tists, their organizations and professional communities.

ACKNOWLEDGMENTS

The author wishes to acknowledge helpful discussions
with John M. Carroll, Virginia Tech and John R. Rice,
Purdue University.

REFERENCES

1.

Casanova, H. and Dongarra, J.J. NetSolve: A
Network Server for Solving Computational Science
Problems, Technical Report CS-95-313, University
of Tennessee, 1995. Accessible at http://www.cs.utk.
edu/netsolve.

. Houstis, E.N., Verykios, V.S., Catlin A.C., Ramakr-

ishnan, N. and Rice, J.R. PYTHIA II: A K/DB Sys-
tem for Recommending and Testing Scientific Soft-
ware, ACM Transactions on Mathematical Software,
Communicated. Also available as Technical Report
CSD-TR-98-031, Department of Computer Sciences,
Purdue University, 1998.

Joshi, A.; Ramakrishnan, N. and Houstis, E.N.,
Multi-Agent System Support for Networked Scien-
tific Computing, IEEE Internet Computing, Vol.
2(3), pages 69-83, 1998.

LaRose, B. The Design and Implementation of
a Performance Database Server, Technical Report
(CS-93-195, University of Tennessee, 1993. Accessi-
ble at http://performance.netlib.org/performance/
html/PDStop.html.

Ramakrishnan, N. Recommender Systems for Prob-
lem Solving Environments, Ph.D. Thesis, Depart-
ment of Computer Sciences, Purdue University, Au-
gust 1997.

Ramakrishnan, N., Houstis, E.N., Joshi, A., Rice,
J.R. and Weerawarana, S. Intelligent Networked
Scientific Computing, In Proceedings of the 15th
IMACS World Congress, pages 785-790, Wis-
sensshaft and Technik Verlag, 1997.

Ramakrishnan, N.; Houstis, E.N. and Rice, J.R.
Recommender Systems for Problem Solving Envi-
ronments, In H. Kautz, Editor. Working Notes of
the AAAI-98 Workshop on Recommender Systems,
AAATI/MIT Press, 1998.

Ramakrishnan, N.; Rice, J.R. and Houstis, E.N.
GAUSS: An Online Algorithm Recommender Sys-
tem for One-Dimensional Numerical Quadrature,
ACM Transactions on Mathematical Software, Com-
municated. Also available as as Technical Report
CSD-TR-96-031, Department of Computer Sciences,
Purdue University, 1996.

Teege, G. Making the Difference: A Subtraction Op-
erator for Description Logics. In J. Doyle, E. Sande-
wall and P. Torasso, Editors. Principles of Knowl-
edge Representation and Reasoning: Proc. of the 4th
International Conference (KR 94), Morgan Kauf-
mann, San Francisco, CA, 1994.



